
Rui Xiao
Comp160 Final Project – Satisfiability
Professor : Roni Khardon
TA : Mona Yousofshahi

0. How to run the program
 1. g++ board.cpp play.cpp

2. ./a.out CNFn75m325.txt
3. options are 1, 2, 3, 4 who stands for DP, WalkSat,

binary assignment(my way), and randomize, respectively.
4. To test different algorithm, terminate one and test

a new one will be better because the memory leak is not
cleaned up, which will affect the running time a little bit.

1. David Putnam(DP)

Intro
For each step of the assignment, the program works like
this:

1. Construct a frequency table to record frequencies of
all variables in available clauses. A clause is an
available clause if the truth value of this clause
has not been determined in the current step. So an
available clause must not have:

a. Variable assigned with a true (or !variable
assigned with a false)

b. Three fixed variables
2. Take the difference of frequencies of Xi and Not Xi.

For example, if there is 13 x1 and 6 !x1, then the
difference is 7.

3. Find the highest value by counting sort and the
variable it stands for.

4. Assign this variable as true and recursively call
the assignment function.

5. Each assignment function will return a false if both
of its children are false, return true otherwise.
For leaves, where all variables are fixed, will
return true if the input is satisfied by all fixed
variables, and return false if otherwise.

Heuristics I use and why I choose
 I assign a variable true that best satisfies the
current input by making as many true assignments as
possible. The program will recursively do so until it
reaches the end. If the end is not satisfied, it will
change the assignment of value from the least frequent one
to the most frequent one.

 I choose this because I think it is a greedy solution
for each step: finding the most influential variable and
change it.

Data Structure I use
 Define n as number of elements, m as number of clauses.

I used one 3 by (n+1) bool array to store the
assignment of variables: first column is the value of xi,
and second column is the value of not xi, and the third
column is if xi has ever been assigned. Trivially, the
First column and the second column is opposite. The third
column is false by default. Example: A[1][5]=1 means x5 is
assigned as true, not x5 is trivially false, and A[2][5]=1
because x5 is assigned. In this table, index is equal to
the variable index for convenience.
 I used one m+1 by 3 integer array to store the input
(clauses): for example A[2][1]=4, A[3][2]=-4 represent:
Line 3, the second variable is x4; Line 4, the third
variable is !x4. In this table, index is equal to variable
index minus 1.

Results from the experiments
Shown below.

More exploration

1. Binary none recursive assignment
2. Random assignment
3. Top 3 frequent assignment (assuming there are more

than 3 variables, didn't code this)

Conclusions

1. Time complexity
Let’s go through the algorithm.

For those inputs that will never get satisfied, the
run time is O(2^n) (n is the number of the elements)
because the algorithm will go through all
combinations(leaves) and return an answer of false.
For those inputs that will potentially get satisfied,
the run time is hard to determine.

2. Space complexity

For those inputs that will never get satisfied, the
space used is O(2^n) because the algorithm will go
through all combinations(leaves) and return an answer
of false. For those inputs that will potentially get
satisfied, the run time is hard to determine. All

assignment tables are copied in each step so that
space complexity is O(2^n*3*n) =O(n*2^n).

3. Conclusion
Great algorithm. It will always return the correct
answer. However time is relatively slow probably
because finding the best solution is space-wise and
time-wise time consuming.

2. WalkSat

Intro
For each step of the assignment, the program works like
this:

1. Assign all variables with random Truth and false
2. Test if the assignment satisfy the input, return

true if it does.
3. Else change one of the variable by

a. 50% choose a random one and flip.
b. Find the xi whose frequency of xi-!xi is the

most.And flip it
4. Repeat 2 and 3 for 10000 times.
5. Return false if there’s no return beforehand

Heuristics I use
 Same as the heuristic method I used for David Putnam
but with a random variable. Choosing the most influential
one to change value.

I choose this because I think it is a greedy solution
for each step: finding the most influential variable and
change it.

Data Structure I use
 Same as the data structure I used for David Putnam.

Results from the experiments
 Shown below

Conclusions

1. Time complexity
If it returns false, the time complexity is simply
O(10000) which is a constant. However if there are
more than 10000 elements, the run-time could be linear
to number of elements

2. Space complexity
Space is O(3*m)+O(3*n) for the clausetable and
assignment table.

3. Conclusion

It’s very hard to choose the best value change when it
shouldn’t do random pick. My version of WalkSat doesn’t
work for some of the trivial cases. I might dig through it
later on.

Extra work

1. Binary assignment(BA)

Variables are assigned according to their importance
in the very first input. All frequency of xi-!xi are
sorted and variables are assigned according to this
sequence
Run time is O(2^n), space complexity is O(3*n)+O(3*m).
All tables don't get copied. For data structure,
several arrays are used.

2. Random assignment for each step
Variables are assigned randomly in each step and thus
the whole process builds a binary recursion tree.
Run time is O(2^n) , space complexity is O(n*2^n)
because all assignment tables get copied. For data
structure, several arrays are used.

3. Comparison & Conclusion
Time comparison
(Second) David

Putnam
WalkSat Binary

ass.
random

CFNn9m47 Y 0 0 Wrong result 0 0
CFNn9m52 F 0 0 0 0
CFNn18m67 Y 0 0 Wrong result .11 .12
CFNn18m77 F .82 .02 .09 2.31
CFNn20m93 Y 2.03 .02 Wrong

result
.23 .86

CFNn20m114
N

3.93 .02 .39 9.18

CFNn23m114
N

39.2 Killed 3.22 killed

A few comments:
1. According to the chart we find that David Putnam might
have spend too much time and space on finding the best
answer for each step and thus make itself slower. Binary
assignment method performs well and does not cost too much
space!

2. Binary ass. Fails when n is large, because it’s strict
exponential run time. (especially when the most influential
variable is supposed to be false)

3. For DP and BA, their run times are all clearly O(2^n),
which is shown from CFNn20m114, and CFMn23m114. Run time
for both algorithms for CFN23m114 are approximately 8 times
of CFNn20m114, matching that 2^(23-20)=8

4. Random method is somehow O(2^n) as well but with larger
variance. I have more test data for CFNn20m93 for randomize,
there are: 4.71, 4.88, .86, .87, .27 seconds, with great
variation.

4. To do in the future
1. I did not clean up memory leak
2. I will fix the WalkSat to make it more usable
3. I will try to make DP, BA faster when running with
larger number of variables
4. I will make DP’s greedy algorithm easier

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

CFNn9m47	 Y	 CFNn9m52	 F	 CFNn18m67	 Y	 CFNn18m77	 F	 CFNn20m93	 Y	 CFNn20m114	 N	 CFNn23m114	 N	

random	 Binary	 ass.	 David	 Putnam	

